skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Flores‐Hansen, Carsten"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Radical chemistries have attracted burgeoning attention due to their intriguing technological applications in organic electronics, optoelectronics, and magneto‐responsive systems. However, the potential of these magnetically active glassy polymers to transport spin‐selective currents has not been demonstrated. Here, the spin‐transport characteristics of the radical polymer poly(4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl) (PTEO) allow for sustained spin‐selective currents when incorporated into typical device geometries with magnetically polarized electrodes. Annealing thin films of PTEO above its glass transition temperature results in a giant magnetoresistance effect (i.e., an MR of ≈80%) at 4 K. Additionally, ferromagnetic resonance spin‐pumping results in a relatively large effective spin‐mixing conductance of 1.18 × 1019m−2at the NiFe/PTEO interface. Due to the large spin‐density and radical‐radical exchange interactions, there is effective propagation of pure spin currents through PTEO in the NiFe/PTEO/Pd multilayer devices. This results in the transport of spin current over long distances with a spin diffusion length of 90.4 nm. The spin diffusion length and spin mixing conductance values surpass those reported in inorganic and metallic systems and are comparable to conventional doped conjugated polymers. This is the first example of spin transport in a nonconjugated radical polymer, and these findings underscore the promising spin‐transporting potential of radical polymers. 
    more » « less